A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images
نویسندگان
چکیده
A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade-classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote sensing images. Such a system is able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. The system is composed of an...
متن کاملCombining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملCombining parametric and non-parametric algorithms for a partially unsupervised classification of multitemporal remote-sensing images
In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of classifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a new ...
متن کاملUnsupervised retraining of a maximum likelihood classifier for the analysis of multitemporal remote sensing images
An unsupervised retraining technique for a maximum likelihood (ML) classifier is presented. The proposed technique allows the classifier’s parameters, obtained by supervised learning on a specific image, to be updated in a totally unsupervised way on the basis of the distribution of a new image to be classified. This enables the classifier to provide a high accuracy for the new image even when ...
متن کاملSpatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS
Agriculture resources reflected to be one of the most imperative renewable and dynamic natural resources. Agricultural sustainability has the premier priority in all countries, whether developed or developing. Cropping system analysis is indispensable for grinding the sustainability of agricultural science. Crop alternation is stated as growing one crop after another on the same piece of la...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 23 شماره
صفحات -
تاریخ انتشار 2002